KIST-경희대 연구진, AI 기술로 '스핀트로닉스' 재료 연구
전자현미경 사진 입력하면 재료 성질 정확도 오차 1% 내외
전자현미경 사진 입력하면 재료 성질 정확도 오차 1% 내외
권희영 박사는 "이 AI 기술을 활용해 자성 시스템을 분석하는 새로운 연구 방법은 실험과 이론의 연결을 강화하고, 나아가 AI 기술과 순수과학 연구의 융합이라는 새로운 연구 분야의 확장이 이루어질 수 있을 것으로 기대한다"고 말했다.
자성체는 물질을 구성하는 미세단위 자석인 스핀이 같은 방향으로 정렬된 영역인 '자성 도메인'들을 갖고 있다. 이 자성 도메인들이 형성되고 변화함에 따라 다양한 자기적 현상들이 나타나는 것으로 알려져 있다. 그동안은 자성 도메인의 특성을 좀 더 정확하고 깊게 이해하기 위해 다양한 실험을 통해 직접 물성을 측정해왔으며, 이를 위해 많은 시간과 자원을 쏟아야 했다.
연구진은 딥러닝 기술을 활용해 측정시간의 한계를 극복했다. AI에 기계학습 알고리즘을 적용, 기존 자성 도메인 이미지들을 학습시키고, 새로운 자성 도메인 이미지를 보면 그 물질의 자기적 물성을 추정하도록 했다.
권 박사는 "AI 기술들이 자성 도메인의 특성을 분석하기 위해 어떻게 활용될 수 있는지에 관한 새로운 길을 제시했다"고 설명했다.
이번 연구 결과는 과학분야의 국제 저널인 '사이언스 어드벤시스' 최신 호에 게재됐다.
monarch@fnnews.com 김만기 기자
※ 저작권자 ⓒ 파이낸셜뉴스, 무단전재-재배포 금지